were applied to strips of Whatman 3MM paper and were developed as descending chromatograms with 2-propanol-concentrated ammonia-water (6:3:1, by volume). The radiochromatograms from the 0.1-mL experiments are shown in Figure 2. The chromatograms from the 0.4-mL incubations were used for the quantitation of ¹⁴C in each chromatographic peak¹² and for the elution of selected fractions for further identification. In the presence of 1 in the incubations there was a gross accumulation of a product with an R_f value of 0.17 corresponding to 2. When this substance was eluted from the papers and rechromatographed, it cochromatographed with authentic 2, and after hydrolysis with alkaline phosphatase it gave mevalonate in 95% yield, Quantitatively, 2 accounted for 40.4% of the total ¹⁴C added to the incubations containing 1 compared with 3.4% in the uninhibited reaction mixtures after 10-min incubations. In addition, there was a decrease in the amount of IPP (5.3% compared with 10.0% of the total ¹⁴C in the absence of 1) presumably owing to the decreased availability of 5-diphosphomevalonate.

The observations taken together can only mean that 1 is a specific inhibitor of 5-phosphomevalonate kinase. We examined the possibility that 1 might also be a substrate for phosphomevalonate kinase. However, incubation of S₁₀ preparations with 1 and $[\gamma^{-32}P]ATP$ gave no evidence of the phosphorylation of 1 to a phosphono[³²P]phosphate.

The mechanism of inhibition of phosphomevalonate kinase by 1 is unknown at present since we have studied its effects so far only in the multienzyme system of rat liver S_{10} preparations and-in a quantitative way-only at one concentration of mevalonate. Although there is no information about the properties of phosphomevalonate kinase of rat liver, it is worth noting that the $K_{\rm m}$ value of (R)-5-phosphomevalonate for the partially purified enzyme from pig liver was found to be ~ 300 μ M.¹³ The inhibition of phosphomevalonate kinase by a racemic mixture of 1 with an apparent K_i ($I_{50}^{CO_2}$) of 145 μ M is the more surprising as no substrate inhibition of the pig-liver enzyme could be detected even at a concentration of 1.5 mM of (R)-5-phosphomevalonate.¹³

Acknowledgments. This work was supported by grants from the National Institutes of Health (HL-12745 to G.P. and GM21400 to R.E.) and from the American Heart Association Greater Los Angeles Affiliate (Investigative Group Award 5211G2 to G.P.) and the PSC-BHE Faculty Research Award Program of CUNY and the Merck Sharp and Dohme Research Laboratories (to R.E.). We thank Mr. Geoffrey Boehm and Mrs. Aniko Meenan for their excellent technical help.

References and Notes

- (1) G. Popják, P. W. Holloway, R. P. M. Bond, and M. Roberts, Biochem. J., 111, 333 (1969).
- (a) G. Popják, P. W. Holloway, and J. M. Baron, *Biochem. J.*, **111**, 325 (1969);
 (b) G. Popják, J. L. Rabinowitz, and J. M. Baron, *ibid.*, **113**, 861 (1969);
 (c) K. Ogura, T. Nishino, T. Koyama, and S. Seto, *J. Am. Chem. Soc.*, 92, 6036 (1970).
- G. Popják, Ann. Intern. Med., 72, 106 (1970).
- (a) E. J. Corey and R. P. Volante, J. Am. Chem. Soc., 98, 1291 (1976). (b) T. S. Parker, G. Popják, K. Sutherland, and S. M. Wong, Fed. Proc., 35, 1697 (1976); Biochim, Biophys, Acta, 530, 24 (1978).
- (5) V. Sarin, B. E. Tropp, and R. Engel, Tetrahedron Lett., No. 4, 351 (1977).
- G. Popják, *Methods Enzymol.*, 1**5**, 393 (1969). The anaerobic incubations contained, in a final volume of 1 mL, 10 mg of (7) S_{10} proteins, 100 μ mol of potassium phosphate buffer (pH 7.5), 30 μ mol of nicotinamide, 10 μmol of dithiothreitol, 5 μmol MgCl₂, 3 μmol of ATP, 3 μmol of glucose 6-phosphates, 1 μmol NADP; 50 nCi of (*R*, S)-[1-¹⁴C]-and 50 nCi of (*R*, S)-[2-¹⁴C]mevalonate (supplied by Amersham-Searle Corp.), the total amount of potassium (R,S)-mevalonate being 100
- (8) T. S. Parker and G. Popják, *Circulation, Suppl. III*, 56, 94 (1977).
 (9) The substrates and the inhibitor are racemic mixtures; only the (*R*)-mevalonate is used enzymically. It is not known whether the R or S or both antiomers of 1 are inhibitors. (10) P. W. Holloway and G. Popiák, *Biochem. J.*, **104**, 57 (1967).
- (11) The preparation of pure (R)- and (S)-mevalonates has been described: ref 6; H. L. Ngan and G. Popják, Bioorg. Chem., 4, 166 (1976); J. W. Barden heier and G. Popják, Biochem. Biophys. Res. Commun., 74, 1023 (1977).

- (12) ¹⁴C compounds can be measured on portions of dried chromatograms with the best efficiency (60 to 65%) by curling up the cut out portions of the paper strips into a roll of ~1-cm diameter and inserting them into the scintillation vials containing 10 mL of RPI 3a70B scintillation fluid. Counting of ¹⁴C was done in a Packard TrI-Carb scintillation spectrometer, Model No. 3320.
- (13) See figure 5 in H. Hellig and G. Popják, J. Lipid Res., 2, 235 (1961).
 (14) Research Fellow of the American Heart Association Greater Los Angeles
- Affiliate while this research was carried out.

George Popják,* Thomas S. Parker¹⁴

Department of Biological Chemistry and Mental Retardation Research Center School of Medicine, University of California, Los Angeles Los Angeles, California 90024

Vivander Sarin, Burton E. Tropp, Robert Engel*

Doctoral Programs in Chemistry and Biochemistry The City University of New York, Queens College Flushing, New York 11367 Received June 20, 1978

Low-Temperature Carbon-13 Nuclear Magnetic Resonance Spectroscopic Investigation of $C_4H_7^+$. Evidence for an Equilibrium Involving the Nonclassical **Bicyclobutonium Ion and the Bisected** Cyclopropylcarbinyl Cation¹

Sir:

Much experimental and theoretical work has been directed toward elucidating the nature of the cationic intermediate(s) involved in cyclopropylcarbinyl, cyclobutyl, and allylcarbinyl interconversions under so-called "stable-ion" as well as solvolytic conditions.^{2,3} Whereas all experimental evidence on $C_4H_7^+$ indicates that the species is a nonclassical cation,²⁻⁴ controversy continues regarding the equilibrium geometry of this cation, with some favoring the bicyclobutonium structure 1a, and others the "bisected" cyclopropylcarbinyl arrangement (1b).²⁻⁴ We now report that an investigation of $C_4H_7^+$ under

"stable-ion" conditions at low temperatures by ¹³C NMR spectroscopy indicates the coexistence of at least two structural isomers of $C_4H_7^+$ in rapid equilibrium with one another.

An SbF₅-SO₂ClF-SO₂F₂ solution of $C_4H_7^+$ was prepared according to previously described techniques³ at ca. -125 °C, employing cyclopropylcarbinol- $1-{}^{13}C$ (43% ${}^{13}C$).⁵⁻⁷ The 20-MHz ¹³C NMR spectrum of this solution at -70 °C dis-

$$\begin{array}{c} & \overset{*}{\longrightarrow} CH_{2}OH \xrightarrow{1. \text{ SbF}_{5} - \text{SO}_{2}CF - \text{SO}_{3}F_{2}, -125 \ ^{\circ}C} \\ \hline & 2. -70 \ ^{\circ}C \end{array} \xrightarrow{2} C_{4}H_{7}^{+}(^{*}CH, \ ^{*}CH_{2})$$

played resonances at δ_{13C} 107.56 and 57.48 which may be assigned to the methine and averaged methylene carbon resonances of C₄H₇⁺, respectively (Table I).^{3d} Under these conditions, the carbon-13 label is distributed nearly randomly between the methylene and methine positions of $C_4H_7^+$, indicating that hydride migrations between methine and methylene centers are occurring at rates which are slow on the NMR time scale.8

The ¹³C NMR chemical shifts obtained on varying the temperature of this $SbF_5-SO_2ClF-SO_2F_2$ solution of $C_4H_7^+$ between -61 and -132 °C are given in Table 1.9 It is apparent that decreasing temperatures cause substantial movement of the methine and average methylene carbon resonances (downfield and upfield, respectively). The temperature de-

Table I. ¹³C NMR Shieldings of C₄H₇⁺ and the 1-Methylcyclopropylcarbinyl Cation at Various Temperatures^a

species	temp, °C	διзсн	δι3CH2	δι3C+	διзCH3
C4H7 ^{+b}	-61	106.78	58.95		
	-70°	107.56	57.48		
	-76	107.64	57.22		
	-80	108.02	56.55		
	-88	108.52	55.58		
	-99	109.20	54.33		
	-101	109.38	53.97		
	-107	109.73	53.46		
	-112	110.03	53.02		
	-115	110.25	52.63		
	-127	111.00	51.36		
	-132	111.32	50.89		
CH ₃ ^b					
$\sim c +$	-62	66.49	58.52	249.63	31.52
CH	-130	65.86	59.11	251.49	31.67

^a All spectra were obtained on a Varian Associates FT-80 NMR spectrometer. The chemical shifts were measured from the CF₂ClH resonance of an external (capillary) CF₂ClH/(CD₃)₂O reference and converted to parts per million relative to external (CH₃)₄Si utilizing δ_{13C} (external (CH₃)₄Si) = δ_{13C} (CF₂ClH) + 116.60. ^b In SbF₅-SO₂ClF-SO₂F₂ solution. ^c Excluded from data analysis.

Table II. Comparison of 13 C NMR Chemical Shifts of C₄H₇⁺ with Those Anticipated for Several Possible Structural Isomers

structure	δ13CH	av disch2
$C_4H_7^+$ (this work)	115±3	47 ± 3
1a ^a	114	56
1b <i>ª</i>	76	116
, ⁺ ^{H^a}	319	

^{*a*} Anticipated ¹³C NMR shieldings of possible structural isomers taken from ref 3d and converted to parts per million relative to external (capillary) (CH₃)₄Si utilizing δ_{13C} (external (CH₃)₄Si) = $-\delta_{13C}$ (CS₂) + 193.7.

pendences over a similar temperature range of the methine, methylene, and methyl carbon resonances of the 1-methylcyclopropylcarbinyl cation^{3b,d,10} in the same solvent system were also studied and are given in Table I.¹¹ The latter experiments show that the temperature dependences of the shifts of a "static" cation are not of sufficient magnitude to account for the rather large temperature-induced shifts observed for $C_4H_7^{+,12}$ The data thus suggest an equilibrium between two or more energetically similar structural isomers of $C_4H_7^+$ which interconvert rapidly on the NMR time scale, even at 63.1 MHz and -155 °C.¹³

Assuming that only two species are involved in the equilibrium, the ¹³C NMR shifts of each set of exchanging sites were calculated from optimization of a linear least-squares fit of the observed chemical shifts vs. the populations of the lower energy isomer of $C_4H_7^+$ with respect to the ¹³C NMR shifts of the exchanging sites as well as the enthalpy and entropy differences between the two isomers.¹⁴

These calculations indicate that the ¹³C NMR shifts of the methine and average methylene carbons of the lower energy isomer of $C_4H_7^+$ are $\delta_{^{13}C}$ 115 ± 3 and 47 ± 3, respectively.^{14,15} Comparison of these calculated ¹³C NMR shieldings with those anticipated for **1a** and **1b** and the cyclobutyl cation⁴ (Table II) show that they are only consistent with the formulation of the most stable isomer of $C_4H_7^+$ as the bicyclobutonium ion (**1a**).¹⁶ The experimental uncertainties^{14,15} in the input parameters δ and T preclude any quantitative assessment of the ¹³C NMR shifts which can be attributed to the higher energy isomer of $C_4H_7^+$.¹⁴ However, the observation that the methine and average methylene carbon resonances of the higher energy isomer of $C_4H_7^+$ must be shifted upfield and downfield, respectively, relative to the corresponding resonances in the more stable isomer, suggests that the bisected cyclopropylcarbinyl cation structure (1b) might reasonably be assigned to the higher energy species (Table II).^{3d}

Although the experimental uncertainties^{14,15} in the input parameters δ and T also prevent calculation of the enthalpy (ΔH) and entropy (ΔS) differences between the structural isomers of C₄H₇⁺, we conclude that the nonclassical bicyclobutonium ion (**1a**) and the bisected cyclopropylcarbinyl cation (**1b**) are rather similar energetically. Indeed if ΔS for the equilibrium is assumed to be 0, the free-energy difference is 1000 ± 500 cal. Thus the results of this investigation are in general accord with those of our previous studies^{3b,d,17} and serve to reinforce the contention ^{3b,d,17} that the preference demonstrated for a bisected cyclopropylcarbinyl cation geometry in suitably substituted systems in no way precludes, or represents a discontinuum from, the adoption of the bicyclobutonium ion geometry by C₄H₇⁺ as has been suggested in the recent literature.^{2c}

Acknowledgment. We thank Professor F. A. L. Anet of the University of California at Los Angeles for the generous use of his facilities to obtain the 63.1-MHz ¹³C NMR spectra.

References and Notes

- (1) Supported by the National Science Foundation.
- (2) For reviews on cyclopropylcarbinyl, cyclobutyl, and allylcarbinyl cations, see the following. (a) Richey, G. "Carbonium Ions". Olah, G. A., Schleyer, P. v. R., Ed.; Wiley-Interscience: New York, 1972; Vol. III, Chapter 25. (b) Wiberg, K. B.; Hess, B. A.; Ashe, A. J. ref 2a, Chapter 26; (c) Brown, H. C. "The Nonclassical Ion Problem". Plenum Press: New York, 1977; Chapter 5.
- (3) For more recent investigations of cyclopropylcarbinyl, cyclobutyl, and allylcarbinyl cations, see the following. (a) Kelley, D. P.; Underwood, G. R.; Barron, P. F. J. Am. Chem. Soc. **1976**, *98*, 3106–3111. (b) Olah, G. A.; Spear, R. J.; Hiberty, P. C.; Hehre, W. J. *ibid.* **1976**, *98*, 7470–7475. (c) Kirchen, R. P.; Sorensen, T. S. *ibid.* **1977**, *99*, 6687–6693. (d) Olah, G. A.; Jeuell, C. L.; Kelly, D. P.; Porter, R. D. *ibid.* **1972**, *94*, 146–156.
- Jeuell, C. L.; Kelly, D. P.; Porter, R. D. *ibid.* **1972**, *94*, 146–156.
 (4) Various geometries for 1a and 1b are discussed in ref 2 and 3. See also Howden, M. E. H.; Roberts, J. D. *Tetrahedron.* **1963**, *19*, 403–414.
 (5) The cyclopropylcarbinol- *1*-¹³C (43% ¹³C) was prepared for us by Dr. Volker
- (5) The cyclopropylcarbinol- 1-1³ C (43% ¹³C) was prepared for us by Dr. Volker Markowski through reduction of cyclopropanecarboxylic acid-carboxyl-¹³ C^{6a} by LiAIH₄.^{6b}
- (6) (a) Renk, E.; Schafer, P. R.; Graham, W. H.; Mazur, R. H.; Roberts, J. D. J. Am. Chem. Soc. **196**1, *83*, 1987–1989. (b) Nystrom, R. F.; Brown, W. G. *ibid.* **1947**, *69*, 2548–2549.
- (7) This solution was made up from 0.067 g of cyclopropylcarbinol-1-¹³C (43% ¹³C), 1.0 g of SbF₅, 1 mL of SO₂CIF, and 1 mL of SO₂F₂.
 (8) Staral, J. S.; Roberts, J. D. *J. Am. Chem Soc.* following paper in this
- (8) Staral, J. S.; Roberts, J. D. J. Am. Chem Soc. following paper in this issue.
 (9) Palerus 140 20 the 130 NMP construct of 0 11 to 11 to
- (9) Below 140 °C, the ¹³C NMR spectrum of C₄H₇⁺ in this solvent system was severely viscosity broadened, whereas above -60 °C, C₄H₇⁺ rapidly decomposes to unidentified products.
- (10) Saunders, M.; Rosenfield, J. J. Am. Chem. Soc. 1970, 92, 2548–2549. (11) Prepared from 0.081 g of 1-methylcyclopropylcarbinol, 1.0 g of SbF₅, 1
- (11) Prepared from 0.081 g of 1-methylcyclopropylcarbinol, 1.0 g of SbF₅, 1 mL of SO₂CIF, and 1 mL of SO₂F₂.
- (12) In principle, some of the temperature dependence of the carbon shieldings of C₄H₇⁺ might arise from differences in zero-point energy associated with having the ¹³C at different CH₂'s in the labeled C₄H₇⁺ cation, but this effect is likely to be far less than the observed changes.

- (13) The temperature dependences of the ¹³C NMR shifts attributable to an equilibrium process suggest the possibility of concomitant temperature dependences for the ¹J_{¹³CH} couplings. The ¹J_{¹³CH} values of the methine and methylene resonances in this system were measured at intervals from -76 to -132 °C but no systematic temperature dependences were observed. The broadness of the resonances lines ($\nu_{1/2} \sim 12$ Hz, probably because of long-range carbon-proton couplings) precluded detection of small changes in these couplings. Nonetheless, the low- and high-field methylene proton resonances^{3d} of C₄H₇⁺ at 60 MHz shifted upfield by 0.06 and 0.12 ppm, respectively (relative to external CF₂CH/(CH₃)), between about -85 to -115 °C. The ¹H NMR resonance of the methine proton of C₄H₇⁺ was too broad to permit accurate measurement of its temperature dependence. The methylene proton shifts of the O-protonated cyclobutanol present in these solutions (see ref 8) remained essentially constant over this temperature range.
- (14) The method of calculation was similar to that described by Lambert, J. B.; Roberts, J. D. J. Am. Chem. Soc. 1965, 87, 3884–3890.
- (15) The calculations assumed experimental error in δ and T of ± 0.1 ppm and ± 2.0 °C, respectively. (16) For analysis of the differences between the ¹³C NMR shieldings of
- (16) For analysis of the differences between the ¹³C NMR shieldings of structurally similar nonclassical cations, see Olah, G. A.; Prakash, G. K. S.; Donovan, D. J.; Yavari, I. J. Am. Chem. Soc. **1978**, 100, 7085– 7086.
- (17) (a) Mazur, R. H.; White, W. N.; Semenow, D. A.; Lee, C. C.; Silver, M. S.; Roberts, J. D. J. Am. Chem. Soc. 1959, 81, 4390-4398. (b) Caserio, M. C.; Graham, W. H.; Roberts, J. D. Tetrahedron. 1960, 17, 171-182; (c) Renk, E.; Roberts, J. D. J. Am. Chem. Soc. 1961, 83, 878-881; (d) Cox, E. F.; Caserio, M. C.; Silver, M. S.; Roberts, J. D. *ibid*. 1961, 83, 2719-2724. (e) Silver, M. S.; Caserio, M. C.; Rice, H. C.; Roberts, J. D. *ibid*. 1961, 83, 3671-3678. (f) Servis, K. L.; Roberts, J. D. *ibid*. 1965, 87, 1331-1339. (g) Vogel, M.; Roberts, J. D. *ibid*. 1966, 88, 2262-2271; (h) Kover, W. B.; Roberts, J. D. *ibid*. 1969, 91, 3687-3688.

John S. Staral, Issa Yavari, John D. Roberts*

Contribution No. 5745 Gates and Crellin Laboratories of Chemistry California Institute of Technology Pasadena, California 91125

G. K. Surya Prakash, Daniel J. Donovan, George A. Olah*

Institute of Hydrocarbon Chemistry Department of Chemistry University of Southern California Los Angeles, California 90007 Received May 1, 1978

Observation by Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Hydride Shifts in C₄H₇⁺ Derived from Cyclopropylcarbinol-1-¹³C in SbF₅-SO₂ClF-SO₂F₂ Solution¹

Sir:

The interconversion in carbocationic reactions of cyclobutyl, cyclopropylcarbinyl, and allylcarbinyl derivatives has been the subject of many investigations since its discovery in 1950.^{2,3} Although controversy continues to surround the precise nature

Figure 1. Fourier transform, 20-MHz ¹³C NMR spectra (at -100 °C of SbF₅-SO₂CIF-SO₂F₂ solutions): (a) C₄H₇⁺ and O-protonated cyclobutanol 3 from cyclopropylcarbinol; (b) C₄H₇⁺ and O-protonated cyclobutanol 3 from cyclopropylcarbinol-*I*-¹³C (43% enrichment); (c) C₄H₇⁺ after warming the solution described in (b) to -70 °C for 20 min and cooling to -100 °C. The resonance lines are assigned as follows: 1, 2, 4 = CF₂CIH of external CF₂CIH/(CD₃)₂O used as reference and field-frequency lock signal; 3, 7 = CH and average CH₂, respectively, of C₄H₇⁺; 5, 8, 9 = C-1, C-2 + C-4, and C-3, respectively, of 3; 6 = (CD₃)₂O of external reference.

of the "nonclassical" $C_4H_7^+$ cationic intermediate(s) involved in these transformations, the very rapid equilibration of the methylene carbons is well established. At present, opinion is divided as to whether the equilibration process involves rapidly interconverting bicyclobutonium ions (1a-c) or "bisected" cyclopropylcarbinyl cations (2a-c).^{2,3} In contrast, no evidence has been reported to indicate that hydride migrations occur in these intermediates.²⁻⁶ We now report that the ¹³C NMR spectrum of an isotopically labeled $C_4H_7^+$ under stable-ion conditions provides unequivocal evidence for slow occurrence of such hydride shifts.

An SbF₅-SO₂ClF-SO₂F₂ solution of C₄H₇⁺ was prepared according to previously described techniques at about -125 °C, employing cyclopropylcarbinol-*I*-¹³C (43% ¹³C).^{4h,7-9} A second SbF₅-SO₂ClF-SO₂F₂ solution of C₄H₇⁺ was prepared

$$\xrightarrow{*}CH_2OH$$

$$\xrightarrow{(SbF_1-SO_1CIF-SO_1F_2)}_{-125 \ ^{\circ}C} C_4H_7^{+}(^{*}CH_2) + \underbrace{\longrightarrow}_{3}^{+}(^{*}CH_2)$$

for comparison purposes from nonisotopically enriched cyclopropylcarbinol under the same conditions.¹⁰ The FT 20-MHz¹³C NMR spectra of these solutions at -100 °C are shown in Figure 1.¹¹ These ¹³C NMR spectra display resonances of an additional, previously unreported, 2.3,4h species with δ_{13C} 84.2 (d, 167), 29.2 (t, 143), and 10.1 (t, 149) as well as the resonances of the methine and averaged methylene carbons of the C₄H₇⁺ cation at δ_{13C} 109.1 (d, 182) and 53.6 (t, 179), respectively.^{2,3,4h,11} The 60-MHz ¹H NMR spectrum of this new species in SbF₅-SO₂ClF-SO₂F₂ at -100 °C consists of a doublet (J = 3 Hz, 2 H) at $\delta 8.78$, a broad multiplet centered at 5.6 (1 H), and two broad, partially coincidental multiplets centered at 2.8 (4 H) and 2.1 (2 H). Comparison of these ¹H and ¹³C NMR parameters with those reported for cyclobutanol¹² and O-protonated alcohols¹³ shows that this substance is O-protonated cyclobutanol (3), a wholly reason-